Extensions 1→N→G→Q→1 with N=C339D4 and Q=C2

Direct product G=N×Q with N=C339D4 and Q=C2
dρLabelID
C2×C339D448C2xC3^3:9D4432,694

Semidirect products G=N:Q with N=C339D4 and Q=C2
extensionφ:Q→Out NdρLabelID
C339D41C2 = C322D24φ: C2/C1C2 ⊆ Out C339D4248+C3^3:9D4:1C2432,588
C339D42C2 = S3×C3⋊D12φ: C2/C1C2 ⊆ Out C339D4248+C3^3:9D4:2C2432,598
C339D43C2 = D6.S32φ: C2/C1C2 ⊆ Out C339D4488-C3^3:9D4:3C2432,607
C339D44C2 = C123S32φ: C2/C1C2 ⊆ Out C339D4484C3^3:9D4:4C2432,691
C339D45C2 = C62.96D6φ: C2/C1C2 ⊆ Out C339D4244C3^3:9D4:5C2432,693
C339D46C2 = C33⋊D8φ: C2/C1C2 ⊆ Out C339D4244C3^3:9D4:6C2432,582
C339D47C2 = S3×D6⋊S3φ: C2/C1C2 ⊆ Out C339D4488-C3^3:9D4:7C2432,597
C339D48C2 = (S3×C6)⋊D6φ: C2/C1C2 ⊆ Out C339D4248+C3^3:9D4:8C2432,601
C339D49C2 = D6.6S32φ: C2/C1C2 ⊆ Out C339D4488-C3^3:9D4:9C2432,611
C339D410C2 = Dic3.S32φ: C2/C1C2 ⊆ Out C339D4248+C3^3:9D4:10C2432,612
C339D411C2 = C12⋊S312S3φ: C2/C1C2 ⊆ Out C339D4484C3^3:9D4:11C2432,688
C339D412C2 = C6224D6φ: C2/C1C2 ⊆ Out C339D4244C3^3:9D4:12C2432,696
C339D413C2 = C12.95S32φ: trivial image484C3^3:9D4:13C2432,689

Non-split extensions G=N.Q with N=C339D4 and Q=C2
extensionφ:Q→Out NdρLabelID
C339D4.1C2 = C338SD16φ: C2/C1C2 ⊆ Out C339D4248+C3^3:9D4.1C2432,589
C339D4.2C2 = C336SD16φ: C2/C1C2 ⊆ Out C339D4244C3^3:9D4.2C2432,583

׿
×
𝔽